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Executive summary 
The ‘National climate projections for Aotearoa New Zealand’ project has produced dynamically 
downscaled model projections from six global climate models (GCMs) from the Coupled Model 
Intercomparison Project phase six (CMIP6) across a range of future scenarios. The dynamical 
downscaling primarily employs the Conformal Cubic Atmospheric Model (CCAM) at ~12km resolution 
over New Zealand. Due to the enhanced resolution, dynamical downscaling generally improves the 
representation of climate at the regional scale relative to GCMs. However, biases can remain in the 
output after downscaling. Bias correction and statistical downscaling (BCSD) provides a relatively 
simple and effective method for reducing CCAM biases whilst also further increasing the spatial 
resolution of the output (to ~5km).  

This report summarises the bias correction methods applied to four key climate variables from CCAM 
output at daily temporal resolution, namely:  

 Accumulated precipitation 

 Maximum near-surface air temperature 

 Minimum near-surface air temperature 

 Potential evapotranspiration 

We use a common underlying bias correction technique known as quantile mapping for all four 
climate variables. Here, quantile mapping operates by mapping the distribution of CCAM modelled 
output onto a reference (or observed) distribution. NIWA’s Virtual Climate Station Network (VCSN) 
data, arguably the most comprehensive high-resolution daily national product, is used here as the 
reference dataset. Additional processing steps are taken so that the bias correction preserves key 
physical characteristics (e.g., the climate change signal) of each target variable.  

The bias correction vastly improves the distributional properties of the CMIP6 downscaled data 
relative to VCSN. Most notably: 

 Biases in the mean and variance in the historical period are reduced to near-zero. 

 Bias correction markedly improves the representation of climate extremes in the 
historical period, though certain biases remain in some regions. 

 Biases in seasonal cycle are significantly reduced, especially for precipitation. 

 Climate change signals are well-captured for climatologies of temperature variables. 

 Climate change signals are generally well-preserved but can show slight modification 
for extreme and threshold-based indices. 
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Guidance on usage 

Bias correction was performed for the following variables independently: daily precipitation, daily 
maximum (tasmax) and minimum (tasmin) near-surface air temperature, and potential 
evapotranspiration (PET). The bias correction was produced for each downscaled global climate 
model (GCM) independently, since certain biases are known to be model-dependent. Correlations 
between variables are not explicitly considered in bias correction, meaning that, in some instances, 
it is possible that this introduces minor physical inconsistencies (e.g. altered relationships between 
temperature and humidity). The only multivariate bias correction explicitly considered here was 
between tasmax and tasmin, through the daily temperature range (DTR). This was enforced so that 
daily tasmax is always greater than tasmin. 

We recommend that the bias corrected data produced here should primarily be used in 
applications that require climate variables in isolation. If multiple variables are required to be used 
in combination (e.g. in downstream hydrological models), the user should carefully check the 
relationships between variables to ensure that no unexpected irregularities are introduced 
through bias correction. Alternatively, the user could consider using a bespoke multivariate bias 
correction specific to their application. 

The bias correction methodology has been designed to preserve the climate change signal (CCS) 
from the Conformal Cubic Atmospheric Model (CCAM) output as closely as possible (described in 
detail in Sections 1 and 2). Here, the CCS is defined as the amount of change (percentage or 
absolute change) in a climate variable in a future period (e.g. 2080-2099) relative to a historical 
base period (e.g. 1986-2005). The rationale for preserving the CCS is the assumption that the 
physics-based CCS from the CCAM output is more reliable than any artificial modification induced 
by statistical bias correction over the historical period (Maraun, 2016; Maurer & Pierce, 2014). In 
subsequent sections of this report, we provide a comprehensive comparison of the CCS before and 
after bias correction. While the CCS is generally well preserved, for some regions and variables 
there are minor discrepancies. If these discrepancies are deemed too large for a certain 
application, the user should consider using the non-bias corrected projections instead. Note that in 
some cases, the preservation of the CCS will not be as accurate at the extremes of the distribution, 
further detail is provided in Section 3. 

The reference observational dataset for all four variables used to bias correct CCAM output was 
NIWA’s Virtual Climate Station Network (VCSN) data. Bias correction assumes that the reference 
dataset provides an accurate estimation of the observed climatology and statistical distributions. 
While VCSN is arguably the most accurate highest-resolution nationwide daily product, the VCSN is 
known to contain certain biases which remain difficult to precisely quantify, such as warm and dry 
biases over some parts of the Southern Alps (Tait, Sturman, and Clark 2012; Tait and Macara 
2014). Unavoidably, aspects of these biases will remain in the bias corrected CCAM output. 

It is important to note that certain variables were not targeted in this bias correction: near-surface 
wind, relative humidity, and shortwave radiation. This is because on a nationwide scale at daily 
temporal resolution the observational uncertainty in these variables is relatively large. As such, 
bias correcting these variables could introduce additional biases in the CCAM output. Future work 
could consider bias correction of these variables on a regional basis where the observations are 
deemed reliable. 
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Guidance on usage 
When using the bias corrected or raw CCAM climate projections, we generally advise the user to 
look at the spread of projections across multiple GCMs. The spread across GCMs can provide an 
estimate of uncertainty in the projections. In certain cases, the multi-model mean can dampen 
plausible changes for certain variables or seasons where there are large differences in the sign of 
the CCS between GCMs. For example, recent research has highlighted that there is relatively large 
disagreement in the sign of the CCS for end-of-century projections of summer precipitation over 
New Zealand (Gibson et al., 2024a). 

It is important to note that the bias correction for CMIP6 described here differs from the previous 
bias correction performed on CMIP5 national climate projections. In summary, the bias correction 
from CMIP5 adopted a semi-empirical approach to bias correct the dynamically downscaled 
outputs from a resolution of 30km to 5km grid based on learnt relationships over the historical 
reanalysis-driven (i.e., ERA-40) run. This semi-empirical approach made local corrections 
(‘enhancement factors’) based on elevation, lapse rate, and wind direction, among others, 
determined from expert knowledge and from existing literature in other regions. Another main 
point of difference is that here our approach performs bias correction for each GCM 
independently, instead of using the single reanalysis-driven run. This helps ensure that the bias 
correction targets both biases stemming from the GCM (i.e. large-scale circulation) and biases 
stemming from CCAM (i.e. small-scale physics). The reader is referred to Mullan et al. (2018) for 
further details of the CMIP5 bias correction methodology. 

Additional general guidance is available on best practices around using bias corrected output, as 
applied to other regions (Met Office 2018; Maraun 2016; Alavoine and Grenier 2023; Casanueva et 
al. 2020; Gudmundsson et al. 2012). 



 

8 Bias Correction of Downscaled CMIP6 Output 

1 Theoretical Background 
Dynamical global climate models (GCMs) represent the scientific community’s best effort to simulate 
the Earth’s climate system. They are founded on physical laws which describe how the Earth’s 
climate responds to external forcings such as increases in greenhouse gas concentrations. However, 
the resolution (i.e. horizontal grid spacing) of GCMs is a well-known and important limitation, 
constrained by computational capacity even on large modern supercomputers. As a result, 
parameterisations are required which reduce physical laws, operating over unresolved scales, to 
statistical properties and functions. Uncertainty associated with these parameterisations can lead to 
systematic biases in the modelled climate.  

Dynamical downscaling, using regional climate models (RCMs), can resolve processes that are not 
directly captured at the scale of GCMs. RCMs generally reduce GCM biases; however, important 
biases can remain in RCM outputs, which can affect their utility in certain climate change 
applications. 

As a result, numerous statistical methods have been developed in an attempt to correct these 
systematic biases in post-processing. These range from simple methods, such as the delta change 
method, to complex multi-step, multi-variate methods, such as the N-dimensional probability density 
function transform [MBCn] (Cannon, 2018). Most approaches are distributional based, correcting the 
distribution of the model output to match the corresponding observations (see Figure 1-1).  

 

Figure 1-1: An example of a distributional based bias correction method.   A schematic representation of 
the quantile mapping method, taken from Kim, Kwon, and Han (2016). 

For the bias correction of dynamically downscaled CMIP6 climate projections over Aotearoa New 
Zealand, we use a commonly used method known as Empirical Quantile Mapping (EQM). This 
method is popular due to its flexibility and overall accuracy in correcting distributional biases, such as 
biases in the mean, variance, and other higher order moments. EQM is an empirical, non-parametric 
method. Previous studies have shown that this method tends to perform better in various settings 
than those fitting parameterised distributions, such as fitting a gamma distribution for precipitation 
(Gudmundsson et al., 2012; Gutjahr & Heinemann, 2013; Ivanov & Kotlarski, 2017). EQM operates by 
deriving empirical cumulative distribution functions (eCDFs) of modelled and observed data and 
derives a transfer function that ‘maps’ the modelled eCDF onto the observed eCDF (Figure 1-1). The 
transfer function is composed of adjustment factors (AFs) that are applied to the corresponding 
quantile. 
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Bias correction methods alter the statistical distribution of the modelled output but do not explicitly 
consider physical processes when doing so. Two important assumptions are made when bias 
correcting. Firstly, it is assumed that the underlying RCM is capable of accurately capturing the 
relevant physical processes. Secondly, the RCM biases are time-invariant, i.e., the RCM biases in the 
historical period are the same as those in the future period. If these assumptions are not fulfilled, 
statistical artefacts can be introduced through bias correction (see Maraun et al. (2017) for notable 
examples).  

Quantile mapping (QM) methods generally perform well over the calibration period (the period it is 
trained on). However, the empirical nature of the method can be a source of overfitting, leading to a 
reduction in generalisability of the transfer function. In other words, the method may perform 
exceptionally well on the period over which it is trained, but then incur larger biases when applied 
out-of-sample in a future climate. The transfer function is heavily dependent on the 
representativeness of the calibration period; if the sample period does not adequately capture 
variability across timescales, performance is more likely to be diminished for out-of-sample data. To 
assess whether this criterion is fulfilled, we apply a leave-one-year-out cross-validation (LOYO CV) 
using the same bias correction method. For details, see Section 2. 

A detailed description of the methodology for each target variable is given in Section 2, with 
particular attention to preservation of the climate change signal and other physical characteristics. 
We present results for each corrected variable in Section 3, with attention given to various 
performance indicators. These include skill metrics in correcting climatologies, seasonality, indices 
developed by the Expert Team on Climate Change Detection and Indices (ETCCDI) [Zhang et al. 2011], 
and preservation of the climate change signal (CCS). Additional technical details describing the final 
QM configuration is given in Appendix A, as well as implementation details. 

1.1 Preserving physical characteristics 
It is important that certain physical properties and characteristics of the downscaled data are 
maintained after bias correction. Here we target two important characteristics: the trend and 
seasonality. Further variable-specific processing is also discussed in Section 2. 

Table 1: Summary of bias corrected variables with the methods used.    

Variable Method Reason 

Precipitation Quantile Delta Mapping Preserve climate change signal; non-
Normal distribution 

Daily Minimum Near Surface Air 
Temperature (Tasmin) 

Detrended Quantile Mapping Preserve climate change signal; 
Normal distribution 

Daily Temperature Range (DTR) Quantile Delta Mapping Preserve climate change signal; non- 
Normal distribution 

Daily Maximum Near-Surface Air 
Temperature (Tasmax) 

Tasmin +  DTR Preserve Tasmax > Tasmin 

Daily Mean Near-Surface Air 
Temperature (Tas) 

Tasmax + Tasmin
2

 Preserve Tasmax > Tas > Tasmin 

Potential Evapotranspiration (PET) Quantile Delta Mapping Preserve climate change signal; non- 
Normal distribution 
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EQM assumes a stationary distribution and can modify trends of non-stationary variables (Maraun, 
2016; Maurer & Pierce, 2014; Pierce et al., 2015). Specifically, where CCAM variance is too low the 
trend will be inflated. This is a particular issue for non-stationary variables such as near-surface air 
temperature, which is well known to have a clear and robust positive trend (IPCC, 2021). Therefore, 
explicit trend preservation is recommended for all variables with clear and robust trends (Alavoine & 
Grenier, 2023; Maraun, 2016). 

In the current report, two methods for trend preservation are explored: Detrended Quantile 
Mapping (DQM) [Cannon, Sobie, and Murdock 2015]; and a variation on Quantile Delta Mapping 
(QDM) [Cannon, Sobie, and Murdock 2015]. DQM preserves the mean trend by first removing the 
trend and normalising the data, applying EQM, subsequently adding the trend back on in the post-
processing. QDM preserves the trend in each quantile by calculating a transfer function based on the 
historical quantiles and applies the transfer function to quantiles recalculated for the future period. 
Both methods reduce to EQM if applying bias correction to data used in the calibration. 

Variables such as near-surface air temperature exhibit a distinct seasonal cycle that should be 
accounted for. Seasonality can be retained by applying the bias correction to each month-of-year or 
day-of-year. Applying QM in this way creates two further considerations: decreased sample size; and 
discontinuities in AFs between points in the seasonal cycle. Both considerations can be accounted for 
by using a window function. This uses data around a calendar period in question, e.g., a 3-month 
window around December would include data from November and January, in the calculation of 
quantiles and AFs. This increases the sample size and smoothens discontinuities between calculated 
eCDFs. 

2 BCSD Methodology 
We bias correct output from CCAM for six driving GCMs for the historical period and projections 
based on three shared socio-economic pathways (SSPs). For the dynamical downscaling, GCM 
selection was based on a balance of data availability, historical evaluation, future warming rate, and 
GCM independence (see Gibson et al. (2024b) for more details). Table 2 presents a list of available 
bias corrected data for each GCM. 

The VCSN dataset was used as a ground truth, to which all variables were bias corrected. We use the 
augmented VCSN product for rainfall, and the Norton-corrected daily minimum and maximum near-
surface air temperature (Tmin & Tmax) for tasmax and tasmin. The augmented VCSN slightly differs 
from NIWA’s operational VCSN rainfall dataset, as it also incorporates rain gauge data from regional 
councils. The training period for the QM algorithm was taken to be the maximum available 
intersecting period between the CMIP6 historical experiment and the VCSN (1972-2014), 
corresponding to 43 years of data. 

Table 2: List of available bias corrected CCAM output for precipitation, tasmax, tasmin & PET for a given 
driving GCM and shared socio-economic pathway.   An asterisk indicates the GCM was an SST-driven run, else 
CCAM was nudged by the driving GCM. 

GCM Historical SSP1-2.6 SSP2-4.5 SSP3-7.0 

ERA5-c192  x x x 

ACCESS-CM2      

AWI-CM-1-1-MR*     

CNRM-CM6-1*     
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Several universal parameters were selected when training the QM algorithm, which are detailed in 
Appendix A. The number of quantiles used to compute an eCDF was selected to be 50. An eCDF was 
computed for each day of the year, with a 31-day window to incorporate data from 15 days either 
side. For a given value in the time series to be corrected, the quantile to which it belonged was 
interpolated to its nearest neighbour in the 50 quantiles, and the corresponding AF is applied. This 
interpolation method has greater granularity but has the advantage over other methods of not 
introducing missing values at the upper and lower limits. For any value lying outside the modelled 
eCDF of the training period, the transfer function is extrapolated as a constant factor (Boé et al., 
2007).  

A summary of the QM algorithm for each variable and GCM can be described as followed: 

1. The eCDFs are computed for the reference dataset (VCSN).  

2. The eCDFs are computed for the CCAM output. 

3. The eCDFs from the VCSN and the CCAM output are used to develop a transfer 
function to map CCAM output to the VCSN.  

4. The transfer function is applied across all SSPs to the CCAM output.  

Table 3: ETCCDI indices for climate variability and extremes used in this study.    

ETCCDI Description Input Variable 

CDD Consecutive dry days (< 1mm) pr 

CWD Consecutive wet days (≥ 1mm) pr 

SDII Simple precipitation intensity index pr 

Rx1day Annual maximum of daily precipitation pr 

Rx3day Annual maximum of 3-day precipitation pr 

TXx Annual maximum daily near-surface air temperature tasmax 

TNn Annual minimum daily near-surface air temperature tasmin 

DTR Diurnal temperature range tasmax, tasmin 

FD Annual number of frost days (< 0°C) tasmin 

TX25 Annual number of days above 25°C tasmax 

The final methodology for each variable was modified to maximize bias correction performance 
whilst retaining their physical characteristics. To ensure the bias correction method improves 
performance across the entire distribution, we evaluate performance in representing ETCCDI indices, 
see Table 3 for details. The finalised variable-specific methodologies presented below were selected 
based on the performance for several skill metrics (Table 4), as well as the applicability given the 
variable-specific distributional properties. 

GCM Historical SSP1-2.6 SSP2-4.5 SSP3-7.0 

EC-Earth3     

GFDL-ESM4*     

NorESM2-MM     
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Each method was cross-validated (CV) using a leave one year out (LOYO) approach, whereby EQM 
(plus variable-specific pre- and post-processing techniques) was applied to all years in the training 
period with the omission of a single year. EQM was deemed sufficient as each method – i.e., DQM 
and QDM – reduces to EQM inside the training period. The year left out was corrected using the 
transfer function derived from the other 42 years. This process was repeated for all 43 years, and the 
CV dataset was concatenated from those years. 

Table 4: Performance indicators used to select the best performing method for each variable 
considered.    

Target Measure Metrics 

Annual climatology  Mean  RMSE, MAE, PCORR 

Summer & winter climatologies Mean & seasonal cycle RMSE, MAE, PCORR 

Calendar month climatologies Mean & seasonal cycle RMSE, MAE, PCORR 

ETCCDI Extremes RMSE, MAE, PCORR 

Annual CCS Trend preservation RMSE, MAE, PCORR 

Seasonal CCS Trend preservation & seasonal cycle RMSE, MAE, PCORR 

ETCCDI CCS Trend preservation & extremes RMSE, MAE, PCORR 

Temporal correlation Preservation o/f physical signals PCORR 

Spell lengths histogram Break-up of wet/dry spells Perkins skill score 

2.1 Consistent Designation of Land and Ocean Grid Cells 
An issue can arise around the coastline when interpolating from the raw CCAM output onto the VCSN 
grid. Grid cells in CCAM are designated as either ocean or land cells. On the other hand, the VCSN 
contains only land cells. The distinction must be consistent when downscaling CCAM output onto the 
VCSN grid as this can fundamentally alter important physical characteristics of a grid cell. For 
example, daily temperature range is significantly different over the ocean than over land and we 
want to preserve the daily temperature cycle over land. To achieve this, we allow only land cells to 
be interpolated to the VCSN grid with the following steps:  

1. Mask out all native CCAM ocean cells and set to missing values. 

2. Use nearest-neighbour interpolation to assign all ocean cells to the value of the 
nearest land cell. 

3. Interpolate CCAM output onto VCSN grid with bilinear or conservative re-gridding 
(variable-dependent). 

4. Mask out all ocean cells using the VCSN mask. 

2.2 Temperature variables 
Daily minimum and maximum near-surface air temperature (tasmin and tasmax) provide important 
information about the daily temperature cycle. As such, we want to preserve the relationships 
between temperature variables. Daily minimum temperature must, by definition, be less than or 
equal to daily maximum temperature. To maintain this relationship, we bias correct tasmin and the 
daily temperature range (DTR; defined as tasmax minus tasmin) independently. Then, we post-
calculate tasmax from the two corrected variables (tasmin plus DTR).  
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Tasmin and tasmax are typically normally distributed with a dynamical range on the order of 300K 
(~27°C). This range is sufficiently far from any physical limits (e.g., zero Kelvin) to avoid introducing 
unphysical values. The transfer function can therefore be derived and applied additively (see 
Appendix A for details).  

In contrast, the DTR is not normally distributed, and cannot be less than 0°C. To ensure that the DTR 
in VCSN is always non-negative, we masked out values that fall below a physical threshold (defined as 
the long-term monthly minima of CCAM DTR for each GCM). By default, QM methods do not have 
constraints to prevent the introduction of non-physical values. Therefore, several options were 
explored which apply this constraint, including multiplicative QM, transforming the data into log-
space, and using a QM method that does not assume a normally distributed target variable. 
However, all above methods can result in a strong modification of the CCS in some locations (an 
example of strong modification of the CCS can be seen in the winter in Figure 2-1). 

Consequently, the transfer function was applied to DTR additively, as this best retains the CCS. This 
did exclude the introduction of negative DTR values, however; the percentage of negative DTR values 
was acceptably low (<0.05%). Any negative DTR values were subsequently set to zero. 

An additional step was taken to preserve the CCS (i.e. trend) throughout the future period, whereby 
the transfer function was applied using a rolling window. The window was set to contain 20 years of 
data and rolled over the future period in 5-year steps, i.e., the 85 years of projections (2015-2099) 
was split into 17 5-year periods, and quantiles were calculated from a 20-year window centred 
around each 5-year period. This removes the assumption of a linear temperature trend which may 
not be met at all locations. 

In summary, based on the considerations described above, the final methodology for bias correcting 
tasmin and tasmax was as follows: 

1. Bias correct tasmin with additive DQM with a rolling window. 

2. Bias correct DTR using additive QDM with a rolling window. 

3. Post-calculate tasmax as tasmin plus DTR. 
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Figure 2-1: Summer (DJF) and winter (JJA) CCS for bias corrected and raw ACCESS-CM2—CCAM data using 
multiplicative detrended quantile mapping.   Modification of the CCS can be seen in winter (bottom right). 

2.3  Precipitation 
The distribution of precipitation differs from that of temperature-related variables in several 
important ways. On the daily timescales considered, precipitation follows a Gamma distribution and 
possesses a large number of zero values (i.e. dry days). This creates several issues in the context of 
QM. A variety of methods have been suggested to account for these issues. In the following, we 
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outline some of the most promising methods, and provide an evaluation of them in isolation and in 
combination with other methods for the NZ region. 

Firstly, a naïve application of QM may result in negative values of precipitation. Negative 
precipitation is not possible in the real world, but the statistical bias correction process does not 
respect this boundary without imposing additional constraints. To account for this, here the transfer 
function is applied multiplicatively (see Appendix A for details). As a consequence of applying QM 
multiplicatively, the bias correction can introduce non-finite values. With multiplicative QM, the 
transfer function is derived as a ratio between the reference and CCAM eCDFs. This can introduce 
some cases where the denominator (a quantile value from the reference eCDF) is a zero value. Here, 
we apply the method of Cannon, Sobie, and Murdock (2015), termed Singularity Stochastic Removal 
(SSR) by Vrac, Noël, and Vautard (2016), to avoid this. SSR removes all zero values by adding normally 
distributed noise (up to 0.05mm per day) to all zero values, before calculating the transfer function, 
thereby removing the possibility of any quantile taking the value of zero. In the post-processing, all 
values below the upper noise limit are set to zero. 

We use QDM to bias correct precipitation nation-wide as many regions across NZ can have 
statistically significant trends in the future period that vary by season (Gibson et al. 2024a). The QDM 
implementation used here does not assume a linear combination of mean trend and normally 
distributed residuals, rather the quantiles in the future period are recalculated and the transfer 
function applied accordingly. This preserves the empirical nature of the QM method – no assumption 
about the precipitation eCDF is made in the trend preservation. Another advantage of this 
implementation is the reduction to EQM for instances where there is no trend, i.e., drawn from the 
same stationary distribution. Therefore, the trend preservation is applied on a grid cell by grid cell 
basis. 

QM has a known artefact which results in an overestimation of the wet-day frequency (the number 
of wet days in a given year, r0) relative to the observed frequency (Casanueva et al., 2020; Themeßl 
et al., 2012). In this instance, a dry day refers to a day in which less than 1mm of precipitation occurs. 
The overestimation occurs as CCAM modelled dry days are mapped to wet days. This can be avoided 
by explicitly introducing wet days in the modelled time series to match the observed r0 (Generate 
Wet Days) Themeßl, Gobiet, and Heinrich (2012) suggest linearly interpolating between zero 
precipitation and the modelled value at which r0

model
 would be equal to r0

obs. Casanueva et al. (2020) 
build on this method by replacing the linear interpolation by sampling a gamma distribution to better 
recreate the expected eCDF.  

A final method was considered, whereby we apply the transfer function with a rolling window 
function during the future period to allow for non-linear trends, as described above in Section 2.2. To 
identify the best performing bias correction technique for precipitation over NZ, we applied each 
method (or combination of) to three models (ACCESS-CM2, EC-Earth3 & GFDL-ESM4) and calculated 
the skill metrics for a sub-sample of performance indicators from Table 4. The multi-model ensemble 
(MME) mean was taken for each metric, presented in Figure 2-2.
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Figure 2-2: Heatmap comparing performance of several methodological variants for 9 indices.   The 
methods labels indicate the processing method (or combination of) that has been applied, each of which have 
been described above. The base method in this case is QDM. The colour represents relative performance 
compared to the median method, with red indicating a weaker performance and blue a stronger performance. 
The performance score is derived from the three-model ensemble mean, aggregated across four skill metrics 
(PCORR, RMSE, MAE, and MAPE) which were weighted by their mean value to take a value around unity. 
Seasonal and monthly indices were averaged across their component calendar periods. 

Using QDM as the basic method, the addition of SSR achieved the best performance on balance. 
Using SSR showed improved performance for several indices, notably the annual accumulated 
precipitation climatology and the simple daily intensity index (SDII), without seriously compromising 
performance across other indices. 

2.4 Potential Evapotranspiration 
To maintain a consistent definition of PET we produce offline calculations of PET for both CCAM and 
VCSN using the Penman method (Penman & Keen, 1997).  We calculate PET using the Pyet python 
package (Vremec et al., 2023) with the following data from the CCAM and VCSN: tasmax, tasmin, tas, 
relative humidity, 10m wind speed logarithmically scaled to 2m windspeed, downwelling shortwave 
radiative flux at the surface, elevation, and latitude. The VCSN wind speed data is only available from 
1997 onwards, therefore, the maximum overlapping period between CCAM and VCSN from which we 
can calculate the transfer function is reduced to 1997-2014 for PET.  

To address this reduced sample size, a few key parameters in the bias correction of PET were 
modified. The number of quantiles was here reduced to 25, and the data was grouped by month with 
a 3-month window. These changes were found to help reduce over-fitting of the bias correction to 
the training data. As with precipitation, PET cannot be assigned a negative value and tends to follow 
a non-normal distribution. Therefore, a similar method to the one applied to precipitation was 
followed for PET. Namely, we use QDM as the base bias correction method, and SSR to prevent the 
introduction of non-finite values. PET also exhibits a significant trend due to its relationship with 
temperature in its derivation. The trend was re-applied to the future period using a rolling window, 
with a 20-year window and a 5-year step size, as described in Section 2.2.



 

Bias Correction of Downscaled CMIP6 Output  17 

3 BCSD Performance Evaluation 
This section describes the performance of the final chosen bias correction methods for the indicators 
outlined in Section 2. The figures presented are selected from three downscaled models: ACCESS-
CM2; EC-Earth3; and GFDL-ESM4. These downscaled GCMs were chosen to represent a reasonably 
large spread of Equilibrium Climate Sensitivity (ECS) and differences in the CCAM experiment design 
(i.e. SST-driven versus nudged model runs). While there are some differences between downscaled 
GCMs in overall performance, the results presented here are overall a good representation of the 
performance of the bias correction on other GCMs in the ensemble.  

3.1 Annual Climatologies 
As we discussed earlier, the bias correction computes transfer functions on a day-of-year basis to 
ensure the seasonal cycle is retained. However, these day-of-year transfer functions also perform 
well in correcting annual climatologies (e.g. annual temperature and rainfall). For example, bias 
correction considerably improves the tasmin annual climatology, with the mean absolute error (MAE) 
from VCSN decreasing from 0.80°C from the raw CCAM output (non-adjusted) to 0.00°C (to three 
significant figures) with bias correction (Figure 3-1). Spatial correlation is also greatly improved, 
subsequently taking a value of 1.00 (to 3 s.f.). The tasmax annual climatology is similarly improved 
(not shown), with MAE decreasing from 1.32°C to 0.06°C, and spatial correlation of 1. These very 
small remaining climatological biases after bias correction are considered inconsequential given the 
observational uncertainty in VCSN itself. The bias correction for precipitation annual climatology 
performs similarly well, with MAE reduced from 501mm/year in the raw CCAM output to 
12.9mm/year after bias correction (Figure 3-2).  

The LOYO CV for all three variables shows little deviation from the bias corrected data using the full 
calibration period, suggesting that the model successfully generalises for those distributions.  

 

Figure 3-1: Annual climatologies for tasmin (1972-2014) for VCSN, bias corrected CCAM output, LOYO CV 
and raw CCAM output (top row), along with bias from VCSN (bottom row).     
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Figure 3-2: Annual climatologies for accumulated precipitation (1972-2014) for VCSN, bias corrected 
ACCESS-CM2—CCAM output, LOYO CV and raw ACCESS-CM2—CCAM output (top row), along with bias from 
VCSN (bottom row) .    

3.2 Seasonal cycle 
Overall, we find that bias-correction signifcantly improves the representation of the seasonal cycle 
across all climate variables. For each of the bias corrected variables, MAE and RMSE remain of the 
same order of magnitude found for annual climatologies, with spatial correlations around 1.00. An 
example is given for winter tasmax in Figure 3-3.  
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Figure 3-3: Winter (JJA) climatologies for tasmax (1972-2014) for VCSN, bias corrected EC-Earth3—CCAM 
output, LOYO CV and raw EC-Earth3—CCAM output (top row), along with bias from VCSN (bottom row).    
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Figure 3-4: Long-term monthly mean accumulated precipitation for 12 locations across NZ for bias 
corrected GFDL-ESM4—CCAM output.    

To further illustrate how bias correction improves the seasonal cycle, we selected 12 locations across 
NZ to more closely inspect the seasonal cycle after bias correction (e.g., Figure 3-4). The chosen sites 
were either of population and/or economic significance and provided a representative sample of the 
various climatic conditions nationwide. The long-term monthly means are improved across all 
variables. The need for bias-correction of the seasonal cycle is particularly evident for precipitation in 
certain regions and GCMs. For example, for GFDL-ESM4, the raw CCAM output struggles to capture 
the seasonal cycle over Fiordland with excessive winter precipitation (Figure 3-4), which is 
subsequently corrected for in the bias corrected output. Note that this seasonal bias is often smaller 
when CCAM is applied to downscaling other GCMs, but GFDL-ESM4 has been selected shown here to 
highlight the added value of the bias correction. 

3.3 ETCCDI 
QM methods are highly effective at capturing the climatological means; however, the higher-order 
moments (i.e. extreme events) of the distribution are more difficult to bias correct, given their 
infrequency. For example, the 99th percentile may be calculated from a relatively small number of 
data points (relative to the average), and thus the bias corrected output may have a higher error 
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than for the climatological mean. To assess how the bias correction performs for higher order 
moments we evaluate several ETCCDI indices. The discussion provided here represents a subset of 
the full ETCCDI indices that were evaluated. Overall, we find that bias correction performs well in 
capturing higher order moments of the distribution. 

The bias correction for hot temperature extremes shows reduced performance relative to the 
seasonal and annual climatological tasmax, as expected. Figure 3-5 shows the annual daily maximum 
temperature (TXx) climatology for the EC-Earth3 nudged run. The warm biases found across the 
North Island (NI) and around the coastal regions of the South Island (SI) are largely eliminated. 
However, the cold biases across the interior persist after bias correction, although to a lesser degree. 
Nevertheless, it is important to highlight that there is a marked improvement across skill metrics 
after bias correction is applied, with RMSE decreasing from 2.53°C for the raw CCAM output to 
1.04°C for the bias corrected output. 

 

Figure 3-5: Annual climatologies for TXx (1972-2014) for VCSN, bias corrected EC-Earth3—CCAM output, 
LOYO CV and raw EC-Earth3—CCAM output (top row), along with bias from VCSN (bottom row).    

High intensity rainfall (Rx1day) across the calibration period (1972-2014) also shows significant 
improvements from bias correction compared to the raw CCAM output (Figure 3-6). Spatial 
correlation increases from 0.79 to 0.99, and RMSE significantly decreases from 34.4 mm/day to 7.4 
mm/day. While dry biases across the Southern Alps remain, they are much smaller in the bias 
corrected output. In contrast, the wet biases across parts of Northland have not been improved from 
bias correction for Rx1day. 
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Figure 3-6: Annual climatologies for highest intensity rainfall for a single day [Rx1day] (1972-2014) for 
VCSN, bias corrected EC-Earth3—CCAM output, LOYO CV and raw EC-Earth3—CCAM output (top row), along 
with bias from VCSN (bottom row).    

Despite the considerable reductions in biases documented above, one known area of weakness of 
QM methods is the tendency to break up the length of wet spells, leading to a systematic shortening 
of wet spells. This overall effect can be seen by comparing histograms of the wet spell length using 
the Perkins skill score, which measures the overlap of two distributions (Perkins et al., 2007). A high 
Perkins skill score (a metric which ranges from 0 to 1) in a certain location would here indicate that 
the length of all wet spell events is comparable between observations and CCAM. Areas of slightly 
diminished performance (i.e. slightly lower skill scores) are evident across the North Island in Figure 
3-7, reflecting the tendency to break-up longer wet spells. On the other hand, in other regions (e.g. 
Central Otago) bias correction improves the representation of wet spell length. This can be traced 
back to the raw CCAM output overestimating the frequency and length of wet spells in this region 
(Campbell et al. 2024, in review). 
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Figure 3-7: Perkins skill score comparing the histograms of wet spell lengths (consecutive days with 
greater than 1mm of rain) against VCSN for the bias corrected EC-Earth3—CCAM output, the corresponding 
cross-validated corrected output, and the raw output (interpolated to 5km).   Twenty bins were used to 
construct the histograms up to 20-day spells. 

3.4 Climate Change Signal 
As discussed earlier, the climate change signal (CCS) from the raw CCAM output for each variable was 
a priori assumed to be more reliable than allowing the bias correction to substantially alter the CCS. 
In some cases, EQM can artificially inflate (or deflate) the CCS when there is a mismatch in variance 
between the calibration and reference data (Maurer and Pierce 2014; Maraun 2016; see Appendix A 
for further details). Explicit trend preservation was therefore implemented for all variables (see 
Section 2 for details). Here, we evaluate the success of that trend preservation relative to the trend 
in CCAM. 
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Figure 3-8: Climate change signal between the historical (1985-2014) and SSP3-7.0 (2070-2099) 
experiments for summer (DJF) and winter (JJA) for accumulated precipitation over those seasons.   The top 
row shows the CCS for bias corrected GFDL-ESM4—CCAM output; the middle row shows the corresponding 
raw model output; and the bottom row indicates the difference between the two. 

The CCS for tasmin and tasmax were almost completely unchanged between the raw and corrected 
CCAM output (not shown), indicating the trend was well-preserved, whereas there was greater 
alteration to the CCS for precipitation. Figure 3-8 provides an example figure for the GFDL-ESM4 SST-
driven run, with some areas seeing a CCS difference exceeding ±10%. This mostly comes in regions 
where there is little precipitation to begin with, so the absolute changes are much smaller. However, 
there are regions where there are considerable absolute and relative changes, such as over the 
Southern Alps in winter. As mentioned previously, this is likely related to the higher sensitivity to 
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error of multiplicative QM. Also, the reference period for this CCS was 2070-2099, whereas the whole 
future period (2015-2099) was used to calculate the eCDF. If the end-of-century period differed 
considerably from the rest of the century, whether due to the high temporal variability characteristic 
of rainfall, or a linear trend, this could impact the CCS preservation. 

 

Figure 3-9: Annual climatologies number of frost days for the historical (1985-2014) and SSP3-7.0 (2070-
2099) experiments and the CCS.   The left column shows the bias corrected GFDL-ESM4—CCAM output, and 
the corresponding raw output in the right column.   

We also explored the trend preservation for the ETCCDI indices and provide one pertinent example in 
the change in frost days. Generally, the trend preservation was considered to perform well across 
variables and seasons. The clearest difference was the number of frost days (FD) across high-
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elevation regions, where the bias corrected CCAM output shows a smaller decrease in FD relative to 
the raw CCAM output (Figure 3-9). This is possibly related to the snow albedo effect: with the 
reduction of snow in a warmer world, the cooling effect of the increased albedo is lost. The QM 
cannot be expected to capture this change which introduces some differences in the CCS in high 
elevation regions. Indices with a strong threshold dependence are likely subject to the greatest 
differences, where a small change in a continuous variable (e.g. air temperature) can induce 
relatively large differences in a categorical variable (e.g. frost days). 

3.5 Temporal correlation 
An important assumption of the QM method is the ability to retain statistical properties related to 
the underlying physical processes in CCAM.  We use temporal correlation between the bias corrected 
and raw model output as a measure of the retention of these properties.  

The bias corrected daily output is still highly temporally correlated with the raw daily output (e.g., 
Figure 3-10), suggesting that important temporal properties have not been degraded through bias 
correction. For precipitation, the reasons for the smaller correlations over the Wairarapa and Central 
Otago cannot be clearly linked to any one cause, although do appear to roughly coincide with the 
strong modifications to the wet spell lengths described earlier. Similarly, the smaller correlations for 
temperature variables generally appear larger in high-elevation regions (not shown). 

 

Figure 3-10: Temporal correlation between bias corrected ACCESS-CM2—CCAM output and the 
corresponding raw model output for daily accumulated precipitation in the historical (1960-2014) and SSP3-
7.0 (2015-2099) experiments.    

4 Summary and conclusions 
We have statistically downscaled and bias corrected CMIP6 climate projections from the CCAM 
dynamical model over the NZ region. The bias correction procedure targeted four daily variables: 
precipitation, maximum and minimum near-surface air temperature, and potential 
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evapotranspiration. An empirical technique known as quantile mapping was used to bias correct the 
modelled CCAM distributions against VCSN. 

This report has described the applied methodology and thoroughly evaluated the output. Biases and 
climatological spatial patterns show substantial improvements for all four key climate variables. The 
seasonal cycle, especially for precipitation, also shows large improvements. Furthermore, the climate 
change signal and daily temporal correlations for these key variables are shown to be well preserved. 
However, no bias correction is perfect, and here we have highlighted some remaining challenges. 
While the climatological biases for extreme events (e.g. rainfall and temperature extremes) are also 
substantially reduced relative to the raw CCAM output, some regional biases for these indices remain 
after bias correction. Similarly, bias correction tends to slightly reduce the length of wet spells 
compared to the raw CCAM output. Another challenge is in preserving the climate change signal for 
indices that are strongly threshold dependent (e.g. frost days). We have provided guidance on the 
limitations of the bias corrected data, and how it can be used most appropriately.  
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6 Glossary of abbreviations and terms 
AF Adjustment Factor 

BCSD Bias Correction-Statistical Downscaling 

CCS Climate Change Signal 

CMIP Coupled Model Intercomparison Project. CMIP6 refers to the sixth 
generation and CMIP5 to the fifth generation of this project. 

CV Cross validation 

eCDFs Empirical Cumulative Distribution Function 

EQM Empirical Quantile Mapping 

ETCCDI Expert Team on Climate Change Detection and Indices 

GCM Global Climate Model 

LOYO Leave One Year Out. A method for cross-validation where one year 
of data is left out of the bias correction model to see how well the 
model generalises to out-of-sample data. 

MAE Mean Absolute Error 

MAPE Mean Absolute Percentage Error 

PCORR Pattern correlation 

RCM Regional Climate Model 

RMSE Root Mean Squared Error 

SSP Shared-socio-economic pathway. Assumed emissions scenarios for 
the future period, combining societal developments with radiative 
forcings. Replaces Representative Concentration Pathways (RCPs) 
from CMIP5. 

tasmax  Daily maximum near-surface air temperature 

tasmin  Daily minimum near-surface air temperature 

VCSN Virtual Climate Station Network 
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Appendix A Details of Quantiles Mapping Configuration 
We use the xclim Python package (Bourgault et al., 2023) for applying the QM algorithm 
(https://xclim.readthedocs.io/en/stable/index.html). xclim is a weather and climate focused library 
created by Ouranos (Quebec, Canada; https://www.ouranos.ca/en), written with the intention of 
manipulating and documenting NetCDF files in line with CF conventions. xclim is built on top of 
Xarray and dask libraries, utilising the extensive vectorised computation and parallelisation of 
those libraries. The following figures and discussion are for illustrative purposes only. 

Quantile settings 
The number of quantiles and spacing between those quantiles should be chosen to achieve the best 
fit without over-fitting to the training data. A high number of quantiles will more precisely estimate 
the CDF for the calibration period but can also result in over-fitting. Likewise, some distributions have 
specific features that make linear spacing between quantiles less suitable, such as the discontinuity 
at zero for precipitation. We tested a range of configurations of quantile density and spacing for both 
temperature and precipitation variables to select the best configuration (see Figure A-1).  

For temperature, a continuous Gaussian curve is most representative of the distribution. The 
dynamic range is not interrupted by any discontinuities.  

 

Figure A-1:  Quantile spacing for linearly spaced nodes (left), log-spaced nodes (centre) and sigmoid spaced 
nodes (right).    Note that the unevenly spaced nodes were found to over fit the training data, therefore the 
linearly spaced nodes were preferred here. 

We tested a range of quantiles, including log-spaced quantiles for precipitation and sigmoid quantiles 
for tasmax and tasmin (Figure A-1). We found that out-of-sample performance did not improve 
greatly above 50 quantiles (not shown). Also, we found variable spacings between the quantile could 
improve within-sample performance, but over-fitting leads to poorer performance out-of-sample. 
The tails of the distribution, where rare events occur, tend to be poorly represented by models, and 
can suffer over-fitting. 

Method for calculating adjustment factors - the `kind` argument 
Consider y to be an array of quantiles of the reference dataset, and x to be an equivalent array of the 
simulated historical quantiles. The adjustment factors (AFs) are then calculated by: 

 For multiplicative kind: AFs = y / x  

 For additive kind: AFs = y - x 

https://xclim.readthedocs.io/en/stable/index.html
https://www.ouranos.ca/en
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This returns an array containing the AFs of equal length to x and y. Any value that falls within the 
range of two quantiles are corrected with equivalent AF. 

As an example, assuming the reference grid cell took values of 𝑥𝑥 = (10, 6, 2) and the modelled grid 
cell took values of 𝑥𝑥 = (20, 12, 4), the adjustment factors would be 𝐴𝐴𝐴𝐴𝐴𝐴 = (0.5, 0.5, 0.5)  for the 
multiplicative kind, and 𝐴𝐴𝐴𝐴𝐴𝐴 = (−10,−6,−2) for the additive kind. 

Typically, the multiplicative kind is used for precipitation, and additive for temperature fields. 
Multiplicative kind imposes a natural limit on the transformation of the variable, as the AFs cannot 
correct a variable to below zero unless there are such negative values in the reference dataset. 

It is possible to change precipitation into an additive variable by performing a log transform. This is 
advocated for by (Alavoine & Grenier, 2023) because it avoids "Type 1" physical inconsistencies, i.e., 
instances where a correction to a variable produces values beyond their dynamic range, e.g., 
negative precipitation.  

We tested this method with varying numbers of quantiles to assess whether there is any 
improvement in the performance for precipitation QM. We find no real improvement in performance 
(not shown), and type 1 physical inconsistencies can also be avoided by calculating AFs 
multiplicatively.  

Accounting for seasonality 
Temperature fields undergo a strong seasonal cycle (so too precipitation in some locations). To 
account for this, we can disaggregate the data into sub-samples depending on the time of year, to 
which we apply QM independently. 

xclim provides several adaptable settings, including grouping by month or by day-of-year, and 
providing a window. The window option will include data from either side of the group of interest. 
For example, for the month of June, data from May and July will be included in the derivation of 
transfer functions.  

We tested five grouping methods: 

 No grouping. 

 Group by month with no window. 

 Group by month with a 3-month window. 

 Group by day-of-year with no window. 

 Group by day-of-year with a 31-day window. 

As can be seen in the monthly means in Figure A-2 and Figure A-3, without a grouper the seasonality 
is significantly smoothed out. Providing a grouper by month or day-of-year greatly improves 
performance.  
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Figure A-2: Dummy data, reference and simulated data drawn from distribution with the same mean and 
high variance.   
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Figure A-3: Dummy data, reference and simulated data drawn from distribution with the low mean and 
high variance.    

Because of the nature of the statistics that these figures show (long-term monthly means), they hide 
the discontinuities in AFs that can occur between months within a time series. Using a day-of-year 
grouper with a 31-day window decreases this effect, by applying a greater smoothing between days 
(e.g., Figure A-4). This limits the sample size from which to calculate AFs, however, the moving 
window provides additional data creating a suitably large sample size. 
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Figure A-4: Monthly means for multiplicative precipitation dummy data (Gamma distribution) with 
groupers.    

For any given value, the quantile to which it belongs and a subsequent interpolation to the 
corresponding AF is needed. Three different methods can be specified in the bias correction phase – 
nearest neighbour, linear and cubic interpolation – which progressively decreases the granularity of 
the interpolation, increasing the smoothness between interpolated points. For transfer functions 
that have been stratified into monthly or day-of-year groups, the interpolation method will be 2D. 
However, linear and cubic interpolation introduces missing values as out-of-sample data cannot be 
interpolated if they fall outside the calculated quantile range. 

To balance these issues, we use a day-of-year grouper with a window of 31 days, and nearest-
neighbour interpolation. This maintains seasonality, whilst reducing the discontinuities in AFs 
between days-of-year and avoid over-fitting to the data. 

Effect of non-stationarity (or the risk of artificial inflation) 
Variables such as temperature have well-known trends over time. This complicates the bias 
correction of simulated futures because the distribution can be significantly different to that used in 
the calibration (for which we have observations). EQM can have significant issues by introducing an 
artefact known as ‘inflation’, as documented in e.g., (Alavoine & Grenier, 2023; Casanueva et al., 
2020; Maraun, 2016).  
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Figure A-5: Summer (DJF) and winter (JJA) climate change signals of ACCESS-CM2-CCAM under the ssp370 
scenario.   The difference between bias corrected and raw signals demonstrates the modification of trends by 
the EQM method. Note that the EQM method was not used here for this reason. 

An example of inflation occurs over the central South Island, where the CCS is different between the 
bias corrected and raw data, particularly in summer (see Figure A-5). Inflation can occur when there 
is a mismatch in standard deviation between observations and the model training data. The transfer 
function will be trained to stretch or compress the model distribution to match the observations. 
However, when applying the transfer function to projections expressing a linear trend, this can lead 
to inflation (deflation) when the standard deviation of the training data is too small (large).  
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Specifically, only a portion of the transfer function is used for out-of-sample data since it is applied by 
mapping the AFs to the calculated historical quantiles. These quantiles are no longer representative 
of the projected distribution, since a linear trend results in a concerted shift. For example, for 
training data with a median (50th percentile) of 15°C, the shifted distribution now 15°C now 
corresponds with the 65th percentile in the future period. This means that  

To demonstrate how this can occur using EQM, we use a single grid cell (Figure A-6; co-located with 
Mahanga EWS). Here, we see the EQM method stretches the PDF of the future period, exaggerating 
the double-peak structure found in the training (historical) data. Whereas, DQM preserves the CCS of 
the mean temperature, whilst still accounting for the lower standard deviation in the historical 
period. Therefore, the use of detrended quantile mapping (DQM) is more appropriate for variables 
with known linear trends.  

 

Figure A-6: Climate change signal over the Mahanga station under the ssp370 scenario, highlighting the 
inflation effect of EQM on trends, without explicit trend preservation.   Note that the EQM method as not 
used here for this reason.  
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Extrapolation behaviour outside the historical quantiles  
Any data points lying outside the historical quantiles is extrapolated with a constant factor 
corresponding to the nearest quantile (Boé et al. 2007). For example, if the upper quantile limit 
calculated from the training period is 500mm for precipitation, any value in the future period above 
this limit will be adjusted by the same factor, whether 700mm or 1000mm. The only alternative 
option provided by xclim is to replace values outside the quantiles with missing values, which is 
unsuitable for many applications.  

Note that this behaviour is not necessary for QDM, where the quantiles are recalculated for the 
future period. By design, no data can lie outside these quantiles. 
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